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ABSTRACT

In this paper, we present a spectral method based on fractional�order

Jacobi functions and their new constructed operational matrix of frac-

tional integration for solving nonlinear weakly singular Volterra integral

equations which include Abel equations. A proposed error analysis inves-

tigates the convergence of mentioned method. Some numerical examples

are presented to con�rm the e�ciency and accuracy of the method.

Keywords: Operational matrix of fractional integration, weakly singu-

lar Volterra equations.
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1. Introduction

Nowadays, fractional integral equations, as generalizations of ordinary in-
tegral equations, have attracted considerable attention for modeling complex
phenomena in science and engineering, including continuum and statistical
mechanics (Mainardi (1997), Goren�o and Mainardi (2008)), dynamics of vis-
coelastic material (Meral et al. (2010)), control theory (Podlubny (2003)), elec-
tromagnetism (Engheta (1996)), �uid mechanics (Kulish and Lage (2002)) and
etc.

A special case of Volterra integral equations is Abel integral equation. This
type of integral equations can be derived directly from a physical problem,
so it has di�erent interdisciplinary applications in modeling environment and
science phenomena, like stellar winds (Knill et al. (1993)), plasma diagnos-
tics (Sukri et al. (2015)), nuclear physics (Kosarev (1980)), atomic scattering
(Sottoni et al. (1979)), radar ranging (Muhleman et al. (1965)), microscopy
(Jakeman and Anderssen (1975)), optical �ber evaluation (Liu et al. (2004)),
X-ray radiography (Deutsch et al. (1990)), spectrographic data (Buie et al.
(1996), Cremers and Birkebak (1966)), seismology (Jerri (1999)), metallurgy
and chemical reactions (Heck and Chandler (1995)), heat conduction (Cannon
(1963)) and semi-conductors (Balaban et al. (2009)).

Surveys on �nding numerical schemes for solving these equations have be-
come an active interest in a variety of �elds in science. In Diogo et al. (2006),
authors have proposed an approximate solution for a nonlinear Volterra inte-
gral equation of Abel type. For solving the �rst Abel integral equation, Lui
and Tao (2007) have applied a mechanical quadrature method. Pandey et al.
(2009) have introduced e�cient algorithms for approximating the solution of
singular integral equations of Abel type. Homotopy perturbation method has
been used for solving a system of generalized Abel integral equations by Kumar
et al. (2011). In Saeedi et al. (2011), authors have employed a method to solve
the �rst and second kind Volterra integral equations with weakly singular ker-
nel. In Shahsavaran (1996), Block�pulse functions and Taylor expansion using
the collocation method has been adopted to solve the second kind of Volterra
integral equations of Abel type.

Spectral and pseudo-spectral methods have been considered by many re-
searchers due to their accurate results in scienti�c computations (Banerjee et al.
(2019), Delkhosh and Parand (2019)). A spectral iterative method have been
introduced to solve nonlinear singular Volterra integral equations of Abel type
by Shoja et al. (2017). A multistep Legendre pseudo-spectral method have
been proposed for solving nonlinear Volterra integral equations in Xiao-Yong
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and Jun-Lin (2020).

The aim of this paper is to introduce an operational fractional�order Jacobi
method for solving the generalized linear and nonlinear Abel integral equations
of the following forms,

f(t) =

∫ t

0

k(t, x)

(t− x)ν
fm(x)dx, 0 < ν < 1,m ≥ 1,m ∈ N, (1)

f(t) = g(t) +

∫ t

0

k(t, x)

(t− x)ν
fm(x)dx, 0 < ν < 1,m ≥ 1,m ∈ N, (2)

where these are known as the �rst kind and the second kind generalized Abel
integral equations, respectively.

This paper is organized as follows. In order to approximate the unknown
function in equations, the fractional Jacobi functions will be introduced in
section 2. Section 3 is related to the extraction of the operational matrices of
fractional integration. A convergence theorem will be presented in section 4.
Section 5 describes the method. For demonstrating applicability and validity
of the method to solve generalized Abel integral equation some examples will
be provided in section 6. The last section will include the conclusions with
some suggestions for further studies.

2. Fractional Calculus and Fractional�Order

Jacobi Functions

In this section, we introduce the fractional integration and fractional Jacobi
functions.

De�nition 2.1. The Riemann-Liouville fractional integral operator of order
η ≥ 0 has the form (Miller and Ross (1993), Podlubny (1998), Samko et al.
(1993)),

Iηu(x) =

{
1

Γ(η)

∫ x
0

(x− t)η−1
u(t)dt, x > 0, if η > 0,

u(x), if η = 0,

where

Γ(η) =

∫ ∞
0

xη−1e−xdx.
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This fractional operator has the following useful properties as follows,

Iµ1Iµ2u(x) = Iµ2Iµ1u(x), Iµ1Iµ2u(x) = Iµ1+µ2u(x), Iηxµ =
Γ(µ+ 1)

Γ(µ+ η + 1)
xµ+η.

2.1 Fractional-order Jacobi functions

Jacobi polynomials, as a family of the basis functions, which are de�ned
on the interval [−1, 1], have the following analytical form (Datta and Mohan
(1995)),

p
(α,β)
m (x) = Γ(β+m+1)

Γ(α+β+m+1)

m∑
k=0

(−1)k−mΓ(α+β+m+k+1)
k!(m−k)!Γ(β+k+1) (x+1

2 )k,

where α, β ∈ R and α, β ≥ −1. These polynomials construct an orthogonal set
with respect to the weight function w(α,β)(x) = (1− x)α(1 + x)β i.e,

〈p(α,β)
j1

(x), p
(α,β)
j2

(x)〉w(α,β) =

∫ 1

−1

p
(α,β)
j1

(x)p
(α,β)
j2

(x)w(α,β)(x)dx = h
(α,β)
j δj1j2 ,

j = j1 = j2,

where

h
(α,β)
j =

2(α+β+1)Γ(j + α+ 1)Γ(j + β + 1)

j!(2j + α+ β + 1)Γ(j + α+ β + 1)
,

and δj1j2 is the so called Kronecker function.

By a change of variable t = 2x − 1, we will have the so-called shifted Jacobi
functions (SHJFs). So these functions, de�ned on the interval [0, 1], can be
shown by the following analytical form,

p̃(α,β)
m (x) =

Γ(β +m+ 1)

Γ(α+ β +m+ 1)

m∑
k=0

(−1)k−mΓ(α+ β +m+ k + 1)

k!(m− k)!Γ(β + k + 1)
xk.

The family of SHJFs makes an orthogonal system on the interval [0, 1] with
respect to the weight function

w̃(α,β)(x) = xβ(1− x)α.
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Proof.

〈p̃(α,β)
j1

(x), p̃
(α,β)
j2

(x)〉w̃ =

∫ 1

0

p̃
(α,β)
j1

(x)p̃
(α,β)
j2

(x)xβ(1− x)αdx,

=
∫ 1

0
p

(α,β)
j1

(2x− 1)p
(α,β)
j2

(2x− 1)xβ(1− x)αdx.

=

∫ 1

−1

p
(α,β)
j1

(z)p
(α,β)
j2

(z)(1− z + 1

2
)α(

z + 1

2
)β(

1

2
dz),

=

∫ 1

−1

p
(α,β)
j1

(z)p
(α,β)
j2

(z)(
1

2
)α+β+1(1− z)α(1 + z)βdz,

= h̃
(α,β)
j1

δj1j2 ,

where we have used the change of variable z = 2x− 1 , and

h̃
(α,β)
j1

= (
1

2
)α+β+1h

(α,β)
j1

.

The concept of Jacobi function basis has been generalized and developed
by a change of variable t = xθ(θ ∈ R, 0 < θ ≤ 1), on SHJFs. Fractional-order

Jacobi functions (FJFs), which are denoted by p
(α,β,θ)
j (x), form an orthogonal

basis as the following theorem,

Theorem 2.1. The set of FJFs forms an orthogonal system on [0, 1] with
respect to the weight function:

w(α,β,θ)(x) = θx(β+1)θ−1(1− xθ)α.

Proof. ∫ 1

0

p
(α,β,θ)
j1

(x)p
(α,β,θ)
j2

(x)θx(β+1)θ−1(1− xθ)αdx
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=

∫ 1

0

p̃
(α,β)
j1

(xθ)p̃
(α,β)
j2

(xθ)(xθ)β(1− xθ)αθxθ−1dx.

A change of variable xθ = z will give,∫ 1

0

p̃
(α,β)
j1

(z)p̃
(α,β)
j2

(z)zβ(1− z)αdz = h̃
(α,β)
j1

δj1j2 .

So, the result is clear.

2.2 Function approximation

Consider the following vector space,

L2
w̃[0, 1]:={f |f is measurable on [0, 1] and ||f ||w̃ <∞},

equipped with the following inner product:

〈f, φ〉w̃ =
∫ 1

0
f(x)φ(x)w̃(x)dx.

Any function f ∈ L2[0, 1] can be expanded via FJFs as follows:

f(x) =

∞∑
k=0

ckp
(α,β,θ)
k (x),

where

ck =
1

h
(α,β,θ)
k

∫ 1

0

f(x)p
(α,β,θ)
k (x)w(α,β,θ)(x)dx,

and

h
(α,β,θ)
k = h̃

(α,β)
k . (3)

Using the truncated series, we have,

f(x) '
M−1∑
k=0

ckp
(α,β,θ)
k (x) = CTΦ

(α,β)
θ (x), (4)

where C and Φ
(α,β)
θ (x) are the following M�vectors,

C = [c0, c1, c2, ..., cM−1]T ,

Φ
(α,β)
θ (x) = [p

(α,β,θ)
0 (x), p

(α,β,θ)
1 (x), p

(α,β,θ)
2 (x), ..., p

(α,β,θ)
M−1 (x)]T .
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3. FJFs�Operational Matrices of Integration

In this section, we want to derive the operational fractional integration and
product matrices related to FJFs, respectively.

Lemma 3.1. The Riemann-Liouville fractional integral of order ν of the frac-

tional�order Jacobi functions vector Φ
(α,β)
θ (t) is obtained by,

IνΦ
(α,β)
θ (t) ≈ QνΦ

(α,β)
θ (t),

where Qν is the fractional integral operational matrix of order ν and for s 6= j,
q(i, j) = 0, where for s = j, the elements of the matrix can be calculated as the
following,

q(i, j) = Γ(β+i+1)
Γ(α+β+i+1)

i∑
k=0

(−1)k−iΓ(α+ β + i+ k + 1)

k!(i− k)!Γ(β + k + 1)

Γ(kθ + 1)

Γ(kθ + ν + 1)

×
M−1∑
s=0

1

h
(α,β,θ)
s

Γ(β + s+ 1)

Γ(α+ β + s+ 1)

×
s∑
r=0

(−1)r−sΓ(α+ β + s+ r + 1)

r!(s− r)!Γ(β + r + 1)

Γ(νθ + k + r + β + 1)Γ(α+ 1)

Γ(νθ + k + r + β + α+ 2)
.

Proof. The Rieman-Liouville integration operator can be approximated as fol-
lows,

1
Γ(ν)

∫ t
0

(t− x)
ν−1

p
(α,β,θ)
i (x)dx = Γ(β+i+1)

Γ(α+β+i+1)

i∑
k=0

(−1)k−iΓ(α+ β + i+ k + 1)

k!(i− k)!Γ(β + k + 1)
Iνtkθ,

= Γ(β+i+1)
Γ(α+β+i+1)

i∑
k=0

(−1)k−iΓ(α+ β + i+ k + 1)

k!(i− k)!Γ(β + k + 1)

Γ(kθ + 1)

Γ(kθ + ν + 1)
tkθ+ν .

Now, we approximate tν+kθ with the �rst M terms of fractional Jacobi functions
as the following,

tν+kθ ≈
M−1∑
s=0

csp
(α,β,θ)
s (t),
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where

cs = 1

h
(α,β,θ)
s

∫ 1

0
tν+kθp

(α,β,θ)
s (t)w(α,β,θ)(t)dt.

Then

cs =
1

h
(α,β,θ)
s

Γ(β + s+ 1)

Γ(α+ β + s+ 1)

s∑
r=0

(−1)r−sΓ(α+ β + s+ r + 1)

r!(s− r)!Γ(β + r + 1)
(5)

×
∫ 1

0

tν+kθtrθθt(β+1)θ−1(1− tθ)αdt.

Now, by a change of variable tθ = z, the expression (5) can be written as,

cs = 1

h
(α,β,θ)
s

Γ(β+s+1)
Γ(α+β+s+1)

s∑
r=0

(−1)r−sΓ(α+ β + s+ r + 1)

r!(s− r)!Γ(β + r + 1)

∫ 1

0

z
ν
θ+k+r+β(1− z)αdz,

that is

cs = 1

h
(α,β,θ)
s

Γ(β+s+1)
Γ(α+β+s+1)

s∑
r=0

(−1)r−sΓ(α+ β + s+ r + 1)

r!(s− r)!Γ(β + r + 1)
B(

ν

θ
+ k + r + β + 1, α+ 1),

where B(x, y) is the so-called beta function.

Considering the relation between the gamma and beta functions, we get,

cs =
1

h
(α,β,θ)
s

Γ(β + s+ 1)

Γ(α+ β + s+ 1)

s∑
r=0

(−1)r−sΓ(α+ β + s+ r + 1)

r!(s− r)!Γ(β + r + 1)

×
Γ(νθ + k + r + β + 1)Γ(α+ 1)

Γ(νθ + k + r + β + α+ 2)
.

(6)

Now, Iνp
(α,β,θ)
i (t) can be expressed in terms of FJFs basis as follows:

Iνp
(α,β,θ)
i (t) =

M−1∑
j=0

q(i, j)p
(α,β,θ)
j (t),

and

q(i, j) =
〈Iνp(α,β,θ)

i (t), p
(α,β,θ)
j (t)〉w(α,β,θ)(t)

〈p(α,β,θ)
j (t), p

(α,β,θ)
j (t)〉w(α,β,θ)(t)

,

where 〈, 〉 denotes the inner product in L2[0, 1]. Therefore,
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q(i, j) = 1

h
(α,β,θ)
j

Γ(β+i+1)
Γ(α+β+i+1)

i∑
k=0

(−1)k−iΓ(α+ β + i+ k + 1)

k!(i− k)!Γ(β + k + 1)

Γ(kθ + 1)

Γ(kθ + ν + 1)

×
M−1∑
s=0

cs

∫ 1

0

p(α,β,θ)
s (t)p

(α,β,θ)
j (t)w(α,β,θ)(t)dt.

Considering (6) and using the orthogonal property of FJFs, the result be
derived.

3.1 Product operational matrix of two FJFs

The product of Φ
(α,β)
θ (t), Φ

(α,β)
θ

T (t) and M�vector C can be stated by the
new basis,

Φ
(α,β)
θ (t)Φ

(α,β)
θ

T (t)C ' U(C)Φ
(α,β)
θ (t), (7)

where

U(C) = 〈Φ(α,β)
θ (t)Φ

(α,β)
θ

T (t)C,Φ
(α,β)
θ (t)〉w(α,β,θ)(t).

The elements of the (M ×M)�matrix U(C), can be calculated as follows:

ui,j =
1

h
(α,β,θ)
j

∫ 1

0

p
(α,β,θ)
i (t)p

(α,β,θ)
` (t)c`p

(α,β,θ)
j (t)w(α,β,θ)(t) dt, i = 0, 1, . . . ,M − 1,

j = 0, 1, . . . ,M − 1, ` = 0, 1, . . . ,M − 1,

c` is the ` -th entry of vector C.

4. Convergence Analysis

In this section, we will state the corresponding convergence theorem.

Theorem 4.1. Suppose that f ∈ L2[0, 1], and Φ
(α,β)
θ (t) is a FJFs�vector. A

sequence fn̂(t) de�ned by fn̂(t) =
n̂∑
j=1

cjp
(α,β,θ)
j (t), n̂ ∈ N, with:

cj =< f(t), p
(α,β,θ)
j (t) >w(α,β,θ) , j = 1, 2, ..., n̂,

converges to f(t) from the above in the vector space of Φ
(α,β)
θ (t)'s components

if and only if
∞∑
j=1

|h(α,β,θ)
j c2j | <∞.
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Proof. Let fn̂ be converges to f . Hence, for n̂ ∈ N, we have,

0 ≤ ||f −
n̂∑
j=1

cjp
(α,β,θ)
j ||22

=
∫ 1

0
w(α,β,θ)(t)(f(t)−

n̂∑
j=1

cjp
(α,β,θ)
j (t))2 dt

=
∫ 1

0
w(α,β,θ)(t)f2(t)dt−

∫ 1

0
w(α,β,θ)(t)2f(t)

n̂∑
j=1

cjp
(α,β,θ)
j (t) dt

+
∫ 1

0
w(α,β,θ)(t)(

n̂∑
j=1

cjp
(α,β,θ)
j (t))2dt,

≤
∫ 1

0
w(α,β,θ)(t)f2(t)dt−

∫ 1

0
w(α,β,θ)(t)2fn̂(t)

n̂∑
j=1

cjp
(α,β,θ)
j (t) dt

+
∫ 1

0
w(α,β,θ)(t)(

n̂∑
j=1

cjp
(α,β,θ)
j (t))2dt,

=
∫ 1

0
w(α,β,θ)(t)f2(t)dt−

∫ 1

0
w(α,β,θ)(t)(

n̂∑
j=1

cjp
(α,β,θ)
j (t))2dt,

=
∫ 1

0
w(α,β,θ)(t)f2(t)dt−

∫ 1

0
w(α,β,θ)(t)(c21(p

(α,β,θ)
1 (t))

2
+c22(p

(α,β,θ)
2 (t))

2

+ . . .+ c2
n̂(p

(α,β,θ)
n̂ (t))

2
) dt,

=||f||22 −
n̂∑
j=1

|h(α,β,θ)
j c2j |.

So

0 ≤ ||f ||22 −
n̂∑
j=1

|h(α,β,θ)
j c2j |,

and, for any f ∈ L2[0, 1], we have,

n̂∑
j=1

|h(α,β,θ)
j c2j | ≤ ||f(t)||22 <∞.
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Hence

∞∑
j=1

|h(α,β,θ)
j c2j | <∞.

Now, let
∞∑
j=1

|h(α,β,θ)
j c2j | <∞. Then if n̂ ∈ N, we have,

0 ≤ ||f − fn̂||22 = ||
∞∑
j=1

cjp
(α,β,θ)
j −

n̂∑
j=1

cjp
(α,β,θ)
j ||22,

=||
∞∑

j=n̂+1

cjp
(α,β,θ)
j ||22,

=
∫ 1

0
w(α,β,θ)(t)(

∞∑
j=n̂+1

cjp
(α,β,θ)
j (t))2 dt,

≤
∞∑

j=n̂+1

c2j
∫ 1

0
w(α,β,θ)(t)(p

(α,β,θ)
j (t))2dt,

=
∞∑

j=n̂+1

|h(α,β,θ)
j c2j |.

So, as n̂ goes to in�nity, the last term will go to zero, and the proof is completed.

5. Implementation Method

Consider (4), let Ω = [0, 1], and w is a weight function on Ω in the usual
sense. De�ne,

L2
w̃(Ω):={f |f is measurable on [0, 1] and ||f ||w̃ <∞},

L2
ω̃(t,x)(Ω× Ω):={f(t, x)|f is measurable on [0, 1]× [0, 1] and ||f ||ω̃(t,x) <∞},

equipped with the following inner products and norms respectively,

〈f, φ〉w̃ =
∫ 1

0
f(x)φ(x)w̃(x)dx.
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〈φi, 〈f(t, x), φj〉〉ω̃(t,x) =
∫ 1

0

∫ 1

0
φ(t)f(t, x)φ(x)w̃(t)w̃(x)dtdx.

Suppose f, g ∈ L2[0, 1] and k(t, x) ∈ L2([0, 1]× [0, 1]). So we may write,

f(x) ≈ CTΦ
(α,β)
θ (x), g(x) ≈ GTΦ

(α,β)
θ (x),

k(t, x) ≈
M−1∑
i=0

M−1∑
j=0

kijp
(α,β,θ)
i (x)p

(α,β,θ)
j (t) = Φ

(α,β)
θ

T (t)KΦ
(α,β)
θ (x),

where

kij =
1

h
(α,β,θ)
i h

(α,β,θ)
j

∫ 1

0

∫ 1

0

p
(α,β,θ)
i (t)k(t, x)p

(α,β,θ)
j (x)w(α,β,θ)(x)w(α,β,θ)(t)dxdt.

Now we present some theorems to approximate the integral part of the equa-
tions (1) and (2) for linear case (m = 1) and nonlinear cases (m > 1). theorem
Suppose that f ∈ C[0, 1] and 0 < ν < 1; then, the integral part of equations
(1) and (2) for the case m = 1, can be expressed in terms of FJFs�basis as
follows,

t∫
0

k(t, x)

(t− x)ν
f(x)dx ≈

M−1∑
j=0

Fjp
(α,β,θ)
j (t) = FTΦ

(α,β)
θ (t),

where

Fj ≈ Γ(1− ν)
1

h
(α,β,θ)
j

1∫
0

Φ
(α,β)
θ

T (t)KU(C)Q1−νp
(α,β,θ)
j (t)w(α,β,θ)(t)dt.

j = 0, 1, . . . ,M − 1.

Proof.

Fj =
1

h
(α,β,θ)
j

∫ 1

0

∫ t

0

k(t, x)

(t− x)ν
f(x)p

(α,β,θ)
j (t)w(α,β,θ)(t)dx dt.

So

Fj ≈
1

h
(α,β,θ)
j

1∫
0

t∫
0

(t− x)(1−ν)−1(Φ
(α,β)
θ (t)

T
KΦ

(α,β)
θ (x))(CTΦ

(α,β)
θ (x))T
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×p(α,β,θ)
j (t)w(α,β,θ)(t)dt dx.

Using the relation (7), we have,

Fj ≈
1

h
(α,β,θ)
j

1∫
0

t∫
0

(t− x)(1−ν)−1(Φ
(α,β)
θ

T (t)KU(C)Φ
(α,β)
θ (x))

×p(α,β,θ)
j (t)w(α,β,θ)(t)dt dx.

We know that

t∫
0

(t− x)(1−ν)−1p
(α,β,θ)
j (x)dx = Γ(1− ν)Q1−νp

(α,β,θ)
j (t).

Therefore

Fj ≈
1

h
(α,β,θ)
j

Γ(1− ν)

1∫
0

Φ
(α,β)
θ

T (t)KU(C)Q1−νp
(α,β,θ)
j (t)w(α,β,θ)(t)dt.

Lemma 5.1. If f(t) ' CTΦα,βθ (t) then,

fm(t) ≈ CTUm−1(C)Φ
(α,β)
θ (t),m ∈ N,

where U is the product operational matrix of two FJFs.

Proof. For m = 2, we have,

f2(t) = f(t)f(t) ≈ (CTΦ
(α,β)
θ (t))(Φ

(α,β)
θ

T (t)C) = CTU(C)Φ
(α,β)
θ (t).

By using induction on m, the proof is completed.

Theorem 5.1. Suppose that f ∈ C[0, 1] and 0 < ν < 1, then the integral part
of equations (1) and (2) for m > 1 can be expanded in terms of FJFs�vector
as the following,∫ t

0

k(t, x)fm(x)

(t− x)
ν dt ≈

M−1∑
j=0

Ejp
(α,β,θ)
j (t) = ETΦ

(α,β)
θ (t),

Ej ≈
1

h
(α,β,θ)
j

1∫
0

(t− x)(1−ν)−1(Φ
(α,β)
θ

T (t)AΦ
(α,β)
θ (t))p

(α,β,θ)
j (t)w(α,β,θ)(t)dtdx,

where A = KU(C1)Γ(1− ν)Q1−ν , CT1 = CTUm−1(C), and j = 0, 1, . . . ,M−1.
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Proof. We know,

Ej =
1

h
(α,β,θ)
j

1∫
0

t∫
0

k(t, x)

(t− x)ν
fm(x)p

(α,β,θ)
j (t)w(α,β,θ)(t)dtdx,

So

Ej ≈
1

h
(α,β,θ)
j

1∫
0

t∫
0

(t−x)(1−ν)−1(Φ
(α,β)
θ

T (t)KΦ
(α,β)
θ (x))(CTUm−1(C)Φ

(α,β)
θ (x))

×p(α,β,θ)
j (t)w(α,β,θ)(t)dt dx.

Let CTUm−1(C) = CT1 , so by using (5.2), we can write,

Ej ≈
1

h
(α,β,θ)
j

1∫
0

t∫
0

(t−x)(1−ν)−1(Φ
(α,β)
θ

T (t)KU(C1)Γ(1− ν)Q1−νΦ
(α,β)
θ (x))p

(α,β,θ)
j (t)

×w(α,β,θ)(t)dt dx.

Now, equation (2), for m > 1 can be rewritten as follows,

CTΦ
(α,β)
θ (t) ' GTΦ

(α,β)
θ (t) + ETΦ

(α,β)
θ (t).

By using the orthogonal property of FJFs, we have the following system of
nonlinear equations:

C = G+ E, (8)

which can be solved using Newton-Raphson method. By substituting the de-
rived vector C in (8), the solution of (2) can be obtained.

6. Numerical Results

In this section, some examples will be presented to show the e�ciency and
applicability of the method. Numerical examples are considered in both linear
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and nonlinear cases. Let f(t) and fn(t) be the exact and approximate solutions
of the main equation, respectively. The error function is de�ned as en(t) =
f(t)− fn(t).

Example 1. Consider the following weakly singular Volterra integral equation,

f(t) = 2
√
t−

t∫
0

f(x)√
t− x

dx, 0 ≤ t ≤ 1, (9)

in which the exact solution is,

f(t) = 1− eπterfc(
√
πt),

where

erfc(t) =
2√
π

∞∫
t

e−x
2

dx.

The solution of this equation is approximated by applying the present
method. Figure 1 shows error function in di�erent cases of α and β andM = 9.

Figure 1: The error of approximate solutions for di�erent cases of (α, β) (Example 1)

Example 2. Consider the following �rst kind Abel integral equation.

t∫
0

f(x)√
t− x

dx = π, 0 ≤ t ≤ 1, (10)

in which the exact solution is f(t) = 1√
t
.
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(a) (b)

Figure 2: The error of approximate solutions for di�erent cases of (α, β), and M (Example 2)

The solution of this equation is approximated by applying our method.
Figure 2 shows error function in di�erent cases of α and β and M .

Example 3. Consider the following Abel integral equation,

f(t) = g(t)−
t∫

0

f(x)√
t− x

dx, 0 ≤ t ≤ 1, (11)

g(t) = cos(t) + sin(t) +
√

2π(fresnels(

√
2t

π
(−cos(t) + sin(t))+

sin(t)) + fresnelc(

√
2t

π
(cos(t) + sin(t)))).

where

fresnels(u) =
u∫
0

sin(πs
2

2 )ds, and, fresnelc(u) =
u∫
0

cos(πs
2

2 )ds,

and the exact solution is f(t) = sin(t) + cos(t).

The solution of this equation is approximated by applying our method.
Figure 3 shows the error function in di�erent cases of M , α = β = 0 and
θ = 0.5. Furthermore, we know that Jacobi functions by changing the values
of α and β include a wide clases of bases, including Legendre base functions
(α = β = 0), Chebyshev base functions of the �rst kind (α = β = −0.5),
Chebyshev base functions of the second kind (α = β = 0.5), and ultraspherical
functions as Gegenbauer base functions (α = β). Table 1 compares the error of
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the approximate solution of Example 3 with ν = 0.5, and ν = 0.7, for Legendre
basis and the second kind of Chebyshev basis respectively.

Figure 3: The error of approximate solutions for di�erent values of M.

Table 1: Comparing the errors of approximate solutions for di�erent cases of (α, β), for I0.5 and
I0.7 (Example 3)

Legendre basis Chebyshev basis Legendre basis Chebyshev basis
x=0.1 -1.922e-08 -8.419e-08 -3.6806e-05 -2.309e-05
x=0.2 1.238e-08 -4.430e-08 2.907e-05 1.624e-05
x=0.3 1.709e-08 -2.843e-08 -1.934e-05 -9.661e-05
x=0.4 -3.165e-08 -5.518e-08 -6.656e-06 -3.446e-06
x=0.5 -5.492e-09 -2.350e-08 2.257e-05 1.225e-05
x=0.6 3.796e-08 9.661e-09 -1.830e-06 -5.535e-06
x=0.7 -2.869e-09 -2.988e-08 -1.922e-05 -1.070e-05
x=0.8 -4.548e-08 -4.354e-08 2.168e-05 1.585e-05
x=0.9 5.324e-08 5.884e-08 -1.312e-05 -1.290e-05

Example 4. Consider the following nonlinear weakly singular Volterra integral
equation:

f(t) +

t∫
0

f5(x)√
t− x

dx = g(t), 0 ≤ t ≤ 1, (12)

where f(t) = t is the exact solution and g(t) = t+ 512
693 t

11
2 .
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Figure 4: Approximate and exact solutions for Example 4 with θ = 0.7 and M = 5, (Example 4)

The numerical results are shown in Figure 4.

Example 5. Consider the following Volterra integral equation with nonlinear
weakly singular kernel:

f(t) +

t∫
0

k(x, t)f2(x)

(t− x)
1
3

dx = g(t) (13)

with f(t) =
√
t, as the exact solution, and k(x, t) = xt, and also g(t) =√

t+ 27
40 t

11
3 .

Figure 5: Approximate and exact solutions for Example 5

The numerical results are portrayed in Figure 5.
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7. Conclusions

In this paper, the authors employed a spectral method for solving gener-
alized linear and nonlinear weakly singular Volterra integral equation of Abel
type. Our operational method, based on the fractional�order Jacobi functions,
converts the problem to a system of linear and nonlinear equations. Finally,
the numerical examples have been provided to guarantee the applicability and
accuracy of the method. This method can be used for other integral equations
as well.
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